Heuristic based genetic algorithms for the re-entrant total completion time flowshop scheduling with learning consideration

نویسندگان

  • Jianyou Xu
  • Win-Chin Lin
  • Junjie Wu
  • Shuenn-Ren Cheng
  • Zi-Ling Wang
  • Chin-Chia Wu
چکیده

Recently, both the learning effect scheduling and re-entrant scheduling have received more attention separately in research community. However, the learning effect concept has not been introduced into re-entrant scheduling in the environment setting. To fill this research gap, we investigate re-entrant permutation flowshop scheduling with a position-based learning effect to minimize the total completion time. Because the same problem without learning or re-entrant has been proved NP-hard, we thus develop some heuristics and a genetic algorithm (GA) to search for approximate solutions. To solve this problem, we first adopt four existed heuristics for the problem; we then apply the same four methods combined with three local searches to solve the proposed problem; in the last stage we develop a heuristic-based genetic algorithm seeded with four good different initials obtained from the second stage for finding a good quality of solutions. Finally, we conduct experimental tests to evaluate the behaviours of all the proposed algorithms when the number of re-entrant times or machine number or learning effect or job size changes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Re-entrant No-wait Flexible Flowshop Scheduling Problem; Using the Bottleneck-based Heuristic and Genetic Algorithm

In this paper, we study the re-entrant no-wait flexible flowshop scheduling problem with makespan minimization objective and then consider two parallel machines for each stage. The main characteristic of a re-entrant environment is that at least one job is likely to visit certain stages more than once during the process. The no-wait property describes a situation in which every job has its own ...

متن کامل

Solving Re-entrant No-wait Flow Shop Scheduling Problem

In this study, we consider the production environment of no-wait reentrant flow shop with the objective of minimizing makespan of the jobs. In a reentrant flow shop, at least one job should visit at least one of the machines more than once. In a no-wait flowshop scheduling problem, when the process of a specific job begins on the first machine, it should constantly be processed without waiting ...

متن کامل

Development of a Set of Algorithms for the Multi-Project Scheduling Problems

In this paper, the problem of determining the best schedule for a set of projects has been modeled in the form of a generalized tardiness flowshop (GTF) problem. We develop a set of heuristic algorithms for minimizing the total tardiness of jobs in a GTF problem. In the generalized version of tardiness flowshop problems, a job is considered to be a collection of operations and there is a due da...

متن کامل

Minimizing makespan on a two-machine re-entrant flowshop

This paper focuses on a two-machine re-entrant flowshop scheduling problem with the objective of minimizing makespan. In the re-entrant flowshop considered here, all jobs must be processed twice on each machine, that is, each job should be processed on machine 1, machine 2 and then machine 1 and machine 2. We develop dominance properties, lower bounds and heuristic algorithms for the problem, a...

متن کامل

Two meta-heuristic algorithms for parallel machines scheduling problem with past-sequence-dependent setup times and effects of deterioration and learning

This paper considers identical parallel machines scheduling problem with past-sequence-dependent setup times, deteriorating jobs and learning effects, in which the actual processing time of a job on each machine is given as a function of the processing times of the jobs already processed and its scheduled position on the corresponding machine. In addition, the setup time of a job on each machin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Computational Intelligence Systems

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016